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Multi-Agent Consensus With Relative-State-Dependent
Measurement Noises

Tao Li, Fuke Wu, and Ji-Feng Zhang

Abstract—In this note, the distributed consensus corrupted by relative-
state-dependent measurement noises is considered. Each agent can mea-
sure or receive its neighbors’ state information with random noises, whose
intensity is a vector function of agents’ relative states. By investigating the
structure of this interaction and the tools of stochastic differential equa-
tions, we develop several small consensus gain theorems to give sufficient
conditions in terms of the control gain, the number of agents and the
noise intensity function to ensure mean square (m.s.) and almost sure (a.s.)
consensus and quantify the convergence rate and the steady-state error.
Especially, for the case with homogeneous communication and control
channels, a necessary and sufficient condition to ensure m.s. consensus on
the control gain is given and it is shown that the control gain is independent
of the specific network topology, but only depends on the number of nodes
and the noise coefficient constant. For symmetric measurement models, the
almost sure convergence rate is estimated by the Iterated Logarithm Law
of Brownian motions.

Index Terms—Distributed consensus, distributed coordination, fading
channel, measurement noises, multi-agent system.

I. INTRODUCTION

In recent years, the distributed coordination of multi-agent systems
with environmental uncertainties has been paid much attention to
by the systems and control community. There are various kinds of
uncertainties in multi-agent networks, which have significant influence
on the success of coordination algorithms and performances of the
whole network. For distributed networks, the uncertainties of a single
node and link may propagate over the whole network along with
the information exchange among agents. Compared with single-agent
systems, the effect of uncertainties of multi-agent systems on the
overall performances is closely related to the pattern of information in-
teraction. Fruitful results have been achieved for distributed consensus
with stochastic disturbances. For discrete-time models, the distributed
stochastic approximation method is introduced in [1]–[3] to attenuate
the impact of communication/measurement noises and conditions are
given to ensure m.s. and a.s. consensus. For continuous-time models,
Li and Zhang [4] gave a necessary and sufficient condition on the
control gain to ensure m.s. consensus. Wang and Elia [5] made a
systematic study of unstable network dynamic behaviors with white
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Gaussian input noises, channel fading and time-delay. Furthermore,
computational expressions for checking m.s. stability under circulant
graphs are developed in [6]. Aysal and Barner [7] and Medvedev [8]
studied the distributed consensus with additive random noises for
discrete-time and continuous-time models, respectively. In a general
framework, Aysal and Barner [7] gave a sufficient condition to ensure
a.s. consensus, and Medvedev [8] gave a sufficient condition to ensure
closed-loop states to be bounded in m.s.

Most of the above literature assume that the intensity of noises
is time-invariant and independent of agents’ states. However, this
assumption does not always hold for some important measurement or
communication schemes. For consensus with quantized measurements
([9]), if the logarithmic quantizer ([10]) is used, then the uncertain-
ties introduced by the quantization are modeled by relative-state-
dependent white noises in a stochastic framework ([10]). If the relative
states are measured by analog fading channels, the uncertainties of
the measurement are also relative-state-dependent noises ([5], [6],
[11]). It is a prominent feature of multi-agent networks with relative-
state-dependent noises that the dynamic evolution of uncertainties
of the whole network interacts with the dynamic evolution of the
agents’ states in a distributed information architecture, which results
in essential difficulties for the control design and closed-loop analysis
of this kind of uncertain multi-agent networks.

In this note, we consider the distributed consensus of high-
dimensional first-order agents with relative-state-dependent measure-
ment noises. The information interaction of agents is described by an
undirected graph. Each agent can measure or receive its neighbors’
state information with random noises. Different from our previous
work for the case with white Gaussian measurement noises ([4]), here,
the noise intensity is a vector function of the relative states of the
agents. So different from most of the existing literature, the statistical
properties of the impact of the noises on the network are time-varying
and coupled by the dynamic evolutions of the agents’ states. Since the
noise intensity depends on relative states, our model can not be covered
by the case with time-varying but independent-of-state noise intensity
functions considered in [7], [8]. Typical examples for our model are the
logarithmic quantization model in the stochastic framework ([10]) and
the distributed averaging system with Gaussian fading communication
channels ([6]). We show that the closed-loop consensus error equation
becomes a stochastic differential equation with multiplicative noises,
which presents us an interesting property that the coupling is quite
well-organized between the noise process over the whole network and
the dynamics of the agents. This equation quantitatively shows how
the intensity coefficient matrix associated with the network noises
relates to the network topology. For the case with independent and
homogeneous control channels and linear noise intensity functions, the
quadratic sum of coefficient matrices over all measurement channels
is exactly the diagonal matrix composed of non-zero eigenvalues of
the Laplacian matrix L multiplied by a constant dependent on the
control gain, the noise intensity coefficient of a single link and the
number N of network nodes. We develop several small consensus
gain theorems and show that if the noise intensity function linearly
grows with rate bounded by σ, then a control gain k which satisfies
0 < k < N/[(N − 1)σ2] can ensure asymptotically unbiased m.s. and
a.s. average-consensus, and the m.s. steady-state error and convergence
rate can be given in quantitative relation to the control gain, the
noise and network topology parameters. Especially, for the case with
independent and homogeneous channels, if the noise intensity grows
with the rate σ, then 0 < k < N/[(N − 1)σ2] is also a necessary
and sufficient condition to ensure m.s. consensus. We show that
though a small control gain can decrease the mean-square steady-state
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error for achieving average-consensus, it may slow down the m.s.
convergence rate as well. For optimizing the m.s. convergence rate, the
optimal control gain is N/[2(N − 1)σ2] in some sense. We prove that
for multi-agent networks with relative-state-dependent measurement
noises, the condition for a.s. consensus is weaker than that for m.s.
consensus. Especially, for networks with homogeneous linear growth
noise intensity functions and control channels, consensus can be
achieved with probability one provided that the control gain satisfies
k + k2σ2/2 > 0. This is a prominent difference compared with the
case with non-state-dependent measurement noises ([4]). For the case
with symmetric noise intensity functions, by the Iterated Logarithm
Law of Brownian motions, it is shown that the convergence rate with
probability 1 is between O(exp{(−(k + k2σ2/2)λ2(L) + ε)t}) and
O(exp{(−(k + k2σ2/2)λN (L)− ε)t}), ∀ ε > 0.

The following notations will be used. 1 denotes a column vector
with all ones. ηN,i denotes the N -dimensional column vector with
the ith element being 1 and others being zero. JN denotes the matrix
(1/N)11T . IN denotes the N -dimensional identity matrix. For a
given matrix or vector A, AT denotes its transpose, and ‖A‖ denotes
its 2-norm. For two matrices A and B, A⊗B denotes their Kronecker
product. For any given real symmetric matrix L, its minimum real
eigenvalues is denoted by λmin(L) and the maximum by λmax(L). For
any given square matrix A, define λ̂min(A) = min1≤i≤N{|λi(A)|}.
E[·] denotes the mathematical expectation.

II. PROBLEM FORMULATION

We consider the consensus control for a network of the agents with
the following dynamics:

ẋi(t) = ui(t), i = 1, 2, . . . , N, (1)

where xi(t) ∈ R
n and ui(t) ∈ R

n. Here, each agent has n control
channels, and each component of xi(t) is controlled by a control
channel. Denote x(t) = [xT

1 (t), . . . , x
T
N (t)]

T and u(t) = [uT
1 (t), . . . ,

uT
N (t)]T . The information flow structure among different agents is

modeled as an undirected graph G = {V,A}, where V = {1, 2, . . . ,
N} is the set of nodes with i representing the ith agent, and A =
[aij ] ∈ R

N×N is the adjacency matrix of G with element aij = 1 or
0 indicating whether or not there is an information flow from agent
j to agent i directly.1 Also, degi =

∑N

j=1
aij is called the degree

of i, The Laplacian matrix of G is defined as L = D −A, where
D = diag(deg1, . . . ,degN ). The ith agent can receive information
from its neighbors with random perturbation as the form:

yji(t) = xj(t) + fji(xj(t)− xi(t))ξji(t), j ∈ Ni, (2)

where Ni = {j ∈ V | aij = 1} denotes the set of neighbors of agent
i, yji(t) denotes the measurement of xj(t) by agent i, and ξji(t) ∈ R

denotes the measurement noise.
Assumption 2.1: The noise intensity function fji(·) is a mapping

from R
n to R

n. There exists a constant σ > 0 such that ‖fji(x)‖ ≤
σ‖x‖, i = 1, . . . , N , j ∈ Ni, for any x ∈ R

n.
Assumption 2.2: The noise processes {ξji(t), i, j = 1, . . . , N} sat-

isfy
∫ t

0
ξji(s)ds = wji(t), t ≥ 0, where {wji(t), i, j = 1, . . . , N}

are independent Brownian motions.
Remark 1: Consensus problems with quantized measurements of

relative states were studied in [9]. If the logarithmic quantization
is used, then by properties of logarithmic quantizers, the quantized

1Here, for conciseness, we consider undirected graphs with 0–1 weights.
It is not difficult to extend our results to the case with general digraphs with
nonnegative weights.

measurement by agent i of xj(t)− xi(t) is given by zji(t) = xj(t)−
xi(t) + (xj(t)− xi(t))Δji(t), which can be viewed as a special case
of (2), where the quantization uncertainty Δji(t) is regarded as white
noises ([10]) in the stochastic framework.

Remark 2: Distributed averaging with Gaussian fading channels
were studied in [6], where the measurement of xj(t)− xi(t) is
given by zji(k) = ξij(k)(xj(k)− xi(k)), where {ξij(k)} are in-
dependent Gaussian noises with mean value μij . Following the
method in [11], Wang and Elia ([6]) transformed the above equation
into zji(k) = μij(xj(k)− xi(k)) + Δij(k)(xj(k)− xi(k)), where
Δij(k) = ξ(k)− μij are independent zero-mean Gaussian noises.
This can be viewed as a discrete-time version of (2), where μij can
be merged into the weight of the weighted adjacency matrix of the
network topology graph.

We consider the following distributed protocol:

ui(t) = K

N∑
j=1

aij (yji(t)− xi(t)) , t ≥ 0, i = 1, . . . , N, (3)

where K ∈ R
n×n is the control gain matrix to be designed. For the

dynamic network (1) and (2) and the distributed protocol (3), we
should consider the following questions. (i) Under what conditions
is the closed-loop system can achieve m.s. or a.s. consensus? (ii)
What is the relationship between the closed-loop performances (i.e.,
the convergence rate, the steady-state error et al.) and the control
gain matrix K, the measurement noise intensity function and the
parameters of the network topology graph? How to design the control
gain matrix to optimize the closed-loop performances?

III. MEAN SQUARE AND ALMOST SURE CONSENSUS

Denote δ(t) = [(IN − JN )⊗ In]x(t). Denote φ = [φ2, . . . , φN ],
where φi is the unit eigenvector of L associated with λi(L). Let

δ(t) = (TL ⊗ In)δ̃(t) and δ̃(t) = [δ̃T1 (t), . . . , δ̃
T
N (t)]

T
with δ̃1(t)≡0.

Denote δ(t) = [δ̃T2 (t), . . . , δ̃
T
N (t)]

T
. Denote Λ0

L = diag(λ2(L), · · · ,
λN (L)) and Ψf

L(K) = Λ0
L ⊗ [(K +KT )/2]−[(N − 1)/N ]

‖K‖2σ̄2(Λ0
L ⊗ In), which is a symmetric matrix. We have the

following theorem.
Theorem 3.1: Suppose that Assumptions 2.1–2.2 hold. If Ψf

L(K) is
positive definite, then the distributed protocol (3) is an asymptotically
unbiased m.s. and a.s. average-consensus protocol ([4]). Precisely,
the closed-loop system of (1) and (2) under (3) satisfies: for any
given x(0) ∈ R

Nn, there is a random vector x∗ ∈ R
n with E(x∗) =

(1/N)
∑N

j=1
xj(0), such that limt→∞ E[‖xi(t)− x∗‖2] = 0, and

limt→∞ xi(t) = x∗, a.s. i = 1, . . . , N , and the m.s. steady-state error
is given by

E

∥∥∥∥∥x∗ − 1

N

N∑
j=1

xj(0)

∥∥∥∥∥
2

≤ ‖K‖2σ̄2λN (L) ‖δ(0)‖2

2N2λmin

(
Ψf

L(K)
) . (4)

Moreover, the m.s. convergence rates of δ(t) is given by

E

[
‖δ(t)‖2

]
≤ ‖δ(0)‖2 exp

{
−2λmin

(
Ψf

L(K)
)
t
}
, (5)

and the a.s. convergence rate is given by

limt→∞
log ‖δ(t)‖

t
≤ −λmin

(
Ψf

L(K)
)
, a.s. (6)

Remark 3: Generally speaking, the moment exponential stability
and the a.s. exponential stability do not imply each other. But under the
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linear growth conditions on the drift and diffusion terms, the moment
exponential stability implies the a.s. exponential stability ([12]). In
Section IV, for the case with linear noise intensity functions, one may
see that a.s. consensus requires weaker condition than m.s. consensus.

Theorem 3.2. Small Consensus Gain Theorem: Suppose that
Assumptions 2.1–2.2 hold. Let the control gain matrix K = kIn,
where k ∈ R. Then the distributed protocol (3) is an asymptotically
unbiased m.s. and a.s. average-consensus protocol if the graph G is
connected and 0 < k < N/[(N − 1)σ2].

Proof: From the condition of the theorem, we know that
Ψf

L(K) = (kΛ0
L − (k2σ̄2(N − 1)/N)Λ0

L)⊗ In, and so Ψf
L(K) is

positive definite if and only if (k − k2σ2(N − 1)/N)λi(L) > 0,
i = 2, . . . , N . The above inequalities hold if and only if the graph G
is connected and 0 < k < N/[(N − 1)σ2]. Then, by Theorem 3.1, we
have the conclusion of the theorem. �

Remark 4: Theorem 3.2 tells us that for the case with mutually inde-
pendent and homogeneous control channels, if the graph is connected
and the product of control gain k and the square upper bound of the
noise intensity σ2 is less than N/(N − 1), then both m.s. and a.s.
consensus can be achieved. It is obvious that 0 < kσ2 < 1 suffices
for 0 < k < N/[(N − 1)σ2], so the selection of control gain can be
independent of N and the network topology, and intuitively speaking,
in inverse proportion to the growth rate of the noise intensity function.

IV. LINEAR NOISE INTENSITY FUNCTION

In this section, we will consider the case where the noisy intensity
fji(·) is a linear function of the relative state xj(t)− xi(t).

Theorem 4.1: Suppose that Assumptions 2.1–2.2 hold with
fji(x) = Σjix, i 	= j, i, j = 1, . . . , N , for any x ∈ R

n, where Σji ∈
R

n×n. Let Bij = [bkl]N×N be an N ×N matrix with bii = −aij ,
bij = aij and all other elements being zero, i, j = 1, 2, . . . , N .
Let ΦK =

∑N

i,j=1
(φTBT

ijφφ
TBijφ)⊗ (ΣT

jiK
TKΣji) and ΨK =

Λ0
L ⊗ (K +KT )− ΦK . Apply the protocol (3) to the system (1) and

(2). Then the closed-loop system satisfies

E

[
‖δ(t)‖2

]
≥ ‖δ(0)‖2 e−λmax(ΨK)t,

E

[
‖δ(t)‖2

]
≤ ‖δ(0)‖2 e−λmin(ΨK)t. (7)

If the symmetric matrix ΨK is positive definite, then the protocol
(3) is an asymptotically unbiased m.s. and a.s. average-consensus
protocol. And

E

[∥∥∥∥∥x∗− 1

N

N∑
j=1

xj(0)

∥∥∥∥∥
2]

≤ λmax(ΦK)

N(N − 1)λmin(ΨK)
‖δ(0)‖2 , (8)

where x∗ is the limit of xi(t), i = 1, . . . , N , both in m.s. and
probability 1.

Remark 5: For consensus problems with precise communication,
it is always assumed that the states and control inputs of agents are
scalars. This assumption will not loose any generality for the case with
precise communication and with non-state-dependent measurement
noises, since the state components of the agents are decoupled. How-
ever, for the case with relative-state-dependent measurement noises,
from model (2), one may see that the noise intensity of different state
components will be generally coupled together. For the case with
linear noise intensity functions, the coupling among communication
channels of different state components means that Σij , i 	= j, i, j =
1, . . . , N , are not diagonal matrices. From Theorem 4.1, one may see
that the non-diagonal elements of Σij indeed have impacts on the
consensus conditions and performances.

For the case with decoupled communication channels, we have the
following results.

Theorem 4.2: Suppose that Assumptions 2.1–2.2 hold with
fji(x) = σjix, σji > 0, i 	= j, i, j = 1, . . . , N , for any x ∈ R

n.
Then the protocol (3) with K = kIn, k ∈ R, is an asymptotically
unbiased m.s. average-consensus protocol if the network topology
graph G is connected and 0 < k < N/[σ2(N − 1)], and only if the
network topology graph G is connected and 0 < k < N/[σ2(N − 1)],
where σ = max{σji, i = 1, . . . , N, j ∈ Ni} and σ = min{σji, i =
1, . . . , N, j ∈ Ni}.

Corollary 4.1: Suppose that Assumptions 2.1–2.2 hold with
fji(x) = σx i 	= j, i, j = 1, . . . , N , for any x ∈ R

n, where σ > 0.
Then the protocol (3) with K = kIn, k ∈ R, is an asymptotically
unbiased mean-square average-consensus protocol if and only if the
network topology graph G is connected and 0 < k < N/[σ2(N − 1)].

Remark 6: Theorems 4.2 and Corollary 4.1 are concerned with the
case where the communication and control channels for different com-
ponents of the states of agents are completely decoupled. Especially,
in Corollary 4.1, when the noise intensity functions are homogeneous
for different agents and state components, we give a necessary and
sufficient condition on the control gain, the noise intensity and network
parameters to ensure m.s. consensus. Theorem 3.2 shows that if the
noise intensity function grows linearly with rate bounded by σ, then a
positive control gain k < 1/σ2 is sufficient for m.s. consensus. For the
case of Corollary 4.1, we can see that it is necessary for m.s. consensus
that the upper bound of the control gain is inversely proportional to the
square of the growth rate of the noise intensity function.

Remark 7: From (7), we can see that for the case with linear noise
intensity functions, the m.s. convergence rate is controlled by the
maximal and minimal eigenvalues of Ψ(K). A question is whether
we can choose K to maximize the m.s. convergence rate. Generally
speaking, a given control gain K that maximize λmin(Ψ(K)) may
not maximize λmax(Ψ(K)) in the meanwhile. However, Corollary 4.1
tells us that for the case with independent and homogeneous com-
munication and control channels, we can indeed get some optimal
solution of the control gain. Noting that Σij = σIn, i, j = 1, . . . , N ,
we have ΦK = (2(N − 1)σ2k2/N)(Λ0

L ⊗ In), and ΨK = (2k −
(2(N − 1)σ2k2/N))(Λ0

L ⊗ In). For this case, the eigenvalues of
ΨK are just the nonzero eigenvalues of the Laplacian matrix multi-
plied by 2k − 2(N − 1)σ2k2/N . Let K∗ = (N/(2(N − 1)σ2))In,
then ΨK∗ = maxK=kIn,0<k<(N/(σ2(N−1))) ΨK . This implies that
the control gain to optimize the m.s. convergence rate can be selected
as k∗ = N/(2(N − 1)σ2).

Remark 8: From (8), we can see that the m.s. steady-state
error for average-consensus is bounded by (λmax(ΦK)/(N(N −
1)λmin(ΨK)))‖δ(0)‖2. The coefficient of the bound depends on the
control gain and the network topology. For the case of Corollary 4.1,
by Remark 7, it can be computed that λmax(ΦK)/(N(N − 1)λmin

(ΨK)) =σ2kλN (L)/(N(N − (N − 1)σ2k)λ2(L)), which vanishes
as kσ2 → 0. To reduce the steady-state error for average-consensus,
one way is to decrease the control gain k, however, from (7), we
can see that as k → 0, the convergence will become very slow;
the other way is to design the network topology to maximize the
synchronizability of the network λ2(L)/λN (L).

Remark 9: For the asymptotic analysis, we consider a sequence
{GN , N ≥ 1} of connected graphs. Noting that λN (L) ≤ 2d(GN ) and
λ2(L) ≥ 4/diam(GN ) ([13]), we have E‖x∗ − (1/N)

∑N

j=1

xj(0)‖2 ≤ (σ2kd(GN )(N−1)/[2N2(1−((N−1)/N)σ2k)], where
d(GN ) is the degree of GN and diam(GN ) is the diameter of GN .2

2The distance between two vertices in a graph is the length of (i.e., number
of edges in) the shortest path between them. The diameter of a graph G is
maximum distance between any two vertices of G.
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Similar to Theorem 4.1, the conditions of Theorem 4.2 and
Corollary 4.1 suffice for a.s. consensus. It was shown that for the
case with non-state-dependent measurement noises, the conditions
for a.s. consensus also suffice for m.s. consensus ([4], [14]). From
the following theorems, we can see that for the case with relative-
state-dependent measurement noises, a.s. consensus requires weaker
condition on the control gain than m.s. consensus.

Theorem 4.3: Let μ
.
=infx∈Rn(N−1),x �=0{(1/‖x‖2)xTΨKx+ (2/

‖x‖4)
∑N

i,j=1
[xT ((φTBijφ)⊗ (KΣji))x]

2}. Under the assumptions
of Theorem 4.1, if the protocol (3) is applied to the system (1) and
(2), then the closed-loop system satisfies limt→∞(log ‖δ(t)‖/t) ≤
−(μ/2) a.s. Particularly, the protocol (3) is an asymptotically unbiased
a.s. average-consensus protocol if μ > 0.

Remark 10: Theorem 4.1 showes that if ΨK is positive
definite, then the protocol (3) can drive the dynamic network
to consensus both in m.s. and probability 1. We know that
μ > 0 is weaker than the positive definiteness of ΨK since
2
∑N

i,j=1
[xT ((φTBijφ)⊗ (KΣji))x]

2/‖x‖4 > 0 for any x 	= 0.
This implies that μ ≥ λmin(ΨK). Actually, let λK

.
= λmin(ΨK) +

(1/2)
∑N

i,j=1
λ̂2
min((φ

TBijφ)⊗(KΣji) + (φTBT
ijφ)⊗ (ΣT

jiK
T )).

It follows that μ ≥ λK and λK > 0 if ΨK is positive definite. So,
λK > 0 can be used as a sufficient condition, which is easier to be ver-
ified than μ > 0, to ensure a.s. consensus. If λK > 0, then the closed-
loop system satisfies limt→∞(log ‖δ(t)‖/t) ≤ −λK/2 < 0 a.s.

If the measurement model is symmetric and K is a symmetric
matrix, then more precise estimates of the convergence rate for a.s.
consensus can be obtained.

Assumption 4.1: The noise processes {ξji(t), i, j = 1, . . . , N}
satisfy

∫ t

0
ξji(s)ds=wji(t),wji(t)≡wij(t), t≥0, where {wji(t), i=

1, . . . , N−1, j= i+1, . . . , N} are independent Brownian motions.
Theorem 4.4: Suppose that Assumptions 2.1 and 4.1 hold with

fji(x) = σjix i 	= j, i, j = 1, . . . , N , for any x ∈ R
n, where σji =

σij > 0. Apply the protocol (3) to the system (1) and (2). If K is
symmetric, then the closed-loop system satisfies

limt→∞
log ‖δ(t)‖+ λmin (AL(K)) t√

2t log log t
≤

√
2‖K‖

∑
ij

aijσji,

a.s., (9)

and

limt→∞
log ‖δ(t)‖+ λmax(AL(K))t√

2t log log t
≥ −

√
2‖K‖

∑
ij

aijσji,

a.s., (10)

where AL(K) = [Λ0
L ⊗K + (1/2)(φT (

∑N

i,j=1
B2

ijσ
2
ji)φ)⊗K2].

Corollary 4.2: Suppose that the network topology graph G is con-
nected and Assumptions 2.1 and 4.1 hold with fji(x) = σx i 	= j,
i, j = 1, . . . , N , for any x ∈ R

n, where σ > 0. Then the protocol (3)
with K = kIn, k ∈ R, is an asymptotically unbiased a.s. average-
consensus protocol if k + k2σ2/2 > 0 and the convergence rate is
given by

limt→∞
log ‖δ(t)‖+(k+ k2σ2

2
)λ2(L)t√

2t log log t
≤
√
2|k|σ

∑
ij

aij , a.s.,

and

limt→∞
log‖δ(t)‖+(k+ k2σ2

2
)λN (L)t

√
2t log log t

≥−
√
2|k|σ

∑
ij

aij , a.s.

Proof: From B2
ij = −Bij and

∑N

i,j=1
Bij = −L, we have

AL(K) = (k + k2σ2/2)(Λ0
L ⊗ In). Then the conclusion follows

from Theorem 4.4. �
Remark 11: Corollary 4.2 tells us that provided that the network

is connected, any given positive control gain or negative control gain
satisfying kσ2/2 < −1 can ensure a.s. consensus. Corollary 4.1 tell
us that to ensure m.s. consensus, the control gain has to be positive
and small enough such that kσ2(N − 1)/N < 1. This implies that
for the case with homogeneous communication and control channels,
a.s. consensus require weaker condition than m.s. consensus, which is
consistent with Theorems 4.1 and 4.3.

Remark 12: For the consensus system with precise communication:
ẋi(t) = k

∑
j∈Ni

(xj(t)− xi(t)), it was shown in [15] that a neces-
sary and sufficient condition on the control gain k for consensus to
be achieved is k > 0. In [4], for the consensus system with non-state-
dependent additive noise: ẋi(t) = k

∑
j∈Ni

(xj(t)− xi(t) + ξji(t)),
it was shown that a constant control gain k, no matter how small it
is, can not ensure the closed-loop stability. For the consensus sys-
tem with non-state-dependent measurement noises and the stochastic
approximation type control protocol: ẋi(t) = k(t)

∑
j∈Ni

(xj(t)−
xi(t) + ξji(t)), it was shown in [4] and [14] that the necessary and
sufficient condition on the nonnegative control gain k(t) for consensus
to be achieved almost surely is

∫∞
0

k(t) = ∞ and
∫∞
0

k2(t) < ∞.
Corollary 4.2 tells us that for the consensus system with relative-state-
dependent measurement noises: ẋi(t) = k

∑
j∈Ni

(xj(t)− xi(t) +

(xj(t)− xi(t))ξji(t)), a sufficient condition on the control gain k for
consensus to be achieved almost surely is k + k2σ2/2 > 0, which
means that even a negative control gain may ensure consensus as
well. This tells us that differently from the non-state-dependent mea-
surement noises ([4], [14]), the relative-state-dependent measurement
noises will sometimes be helpful for the a.s. consensus of the network.
Whether or not network noises need to be attenuated depends on the
pattern that noises impact on the network.

Remark 13: For the consensus system with non-state-dependent
measurement noises and the stochastic approximation type control
protocol, it was shown in [4] and [14] that the vanishing control gain
k(t) with a proper vanishing speed is necessary and sufficient to ensure
the m.s. and a.s. consensus, however, the vanishing control gain may
result in a slower convergence of the closed-loop system, which is no
longer exponentially fast. From the results of this paper, we can see that
for the case with relative-state-dependent noises, the vanishing of the
control gain is not necessary and the convergence speed of the closed-
loop system can be exponentially fast.

Remark 14: It is well known that multiplicative noises can be
used to stabilize an unstable system in the sense of probability 1
([16]), and p-moments with p ∈ (0, 1) ([17]). In Corollary 4.2, the
condition k + k2σ2/2 > 0 shows that the noises play positive roles
for a.s. consensus. However, For the m.s. consensus (p = 2), the
condition 0 < kσ2(N − 1)/N < 1 in Corollary 4.1 shows that the
noises play negative roles, which means that for a given fixed update
gain, the noise level σ2 could not be larger than the threshold value
N/(k(N − 1)). This implies that there exist fundamental differences
between the a.s. and the m.s. consensus for the consensus system with
relative-state-dependent noises.

Remark 15: In [6], the discrete-time distributed averaging is
considered with fading channels and time-delays. By converting the
fading channel model into a precise measurement model with relative-
state-dependent noises and the assumption that the closed-loop system
is input-output stable, some necessary and sufficient conditions were
given under circulant graphs. It was shown that as the number of agents
or time-delay increases to infinity, small control gains can lead to m.s.
stability but may slow down the convergence. Here, the closed-loop
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system is not assumed to be input-output stable in prior. The network
topology is not limited to circulant graphs and the convergence and
performance are also considered for a.s. convergence. Corollary 4.1
shows that to ensure m.s. consensus, the control gain has to be small
enough. This result and those of [6] both reveal that there is a natural
trade-off between the m.s. convergence speed and the robustness to
noise for the choice of the control gain. Our method can be further ex-
tended to the discrete-time case with the noises modeled by martingale
difference sequences, which can cover the case with Bernoulli fading
channels ([5]) and the stochastic logarithmic quantization in [10].

Remark 16: Consider a connected two-agent undirected network.
if f12(x) = σ12x, f21(x) = σ21x, σ12 > 0, σ21 > 0, for any x ∈ R

n,
then the protocol (3) with K = kIn, k ∈ R is an a.s. average-
consensus protocol if and only if 2k + k2(σ2

12 + σ2
21)/2 > 0, and

is a m.s. average-consensus protocol if and only if 4k − k2(σ2
12 +

σ2
21) > 0. The m.s. steady-state error is given by E‖x∗ − (x1(0) +

x2(0)/2‖2 = k(σ2
12 + σ2

21)‖x1(0)−x2(0)‖2/(4[4−k(σ2
12+σ2

21)]).
So the fact that a.s. consensus requires weaker condition than m.s.
consensus can be further verified by the two agent case even if
the channel is not symmetric. It can be verified that for the two
agent case, (λmax(ΦK)/(N(N − 1)λmin(ΨK)))‖δ(0)‖2 = k(σ2

12+
σ2
21)‖x1(0)− x2(0)‖2/(4[4− k(σ2

12 + σ2
21)]), which implies that

the upper bound of the m.s. steady-state error in Theorem 4.1 is tight
for the two agent case.

V. CONCLUDING REMARKS

In this note, the distributed consensus of high-dimensional first-
order agents with relative-state-dependent measurement noises has
been considered. The information exchange among agents is described
by an undirected graph. Each agent can measure or receive its neigh-
bors’ state information with random noises, whose intensity is a vector
function of agents’ relative states. By investigating the structure of
the interaction between network noises and the agents’ states and the
tools of stochastic differential equations, we have developed several
small consensus gain theorems to give sufficient conditions to ensure
m.s. and a.s. consensus and quantify the convergence rate and the
steady-state error. Especially, for the case with linear noise intensity
functions and homogeneous communication and control channels, a
necessary and sufficient condition to ensure m.s. consensus on the
control gain k is 0 < k < N/[(N − 1)σ2], where σ is the growth rate
of the noise intensity function. It is shown that for this kind of multi-
agent networks, a.s. consensus requires weaker conditions than m.s.
consensus. Especially, for networks with homogeneous linear noise
intensity functions and control channels, consensus can be achieved
with probability one provided k + k2σ2/2 > 0, which means that
even a negative control gain can also ensure almost consensus. For
future research on the distributed coordination of multi-agent systems
with relative-state-dependent measurement noises, there are many in-
teresting topics, such as the discrete-time case with the noises modeled
by martingale difference sequences, the case with random link failures,
the time-delay and distributed tracking problems.

APPENDIX

Lemma A.1: The N × (N − 1) dimensional matrix φ satisfies
φφT = IN − JN , and φTφ = IN−1.

Lemma A.2: Let Bij = [bkl]N×N , i, j = 1, 2, . . . , N be matrices
defined in Theorem 4.1. Then BT

ij11
TBij = (N/N − 1)BT

ijφφ
TBij .

Lemma A.3: Suppose that the assumptions of Theorem 4.1 hold.
Applying the protocol (3) to the system (1) and (2), the closed-loop
system satisfies dδ(t) = −(Λ0

L ⊗K)δ(t)dt+
∑N

i,j=1
[(φTBijφ)⊗

(KΣji)]δ(t)dwji(t).

Lemma A.4: Suppose that the assumptions of Theorem 4.1 hold.
Apply the protocol (3) to the system (1) and (2), then for all δ(0) 	= 0,
the closed-loop system satisfies P{δ(t) 	= 0 on all t ≥ 0} = 1.

Lemma A.5: Suppose that the assumptions of Theorem 4.4 hold.
Apply the protocol (3) to the system (1) and (2), then the closed-loop
system satisfies δ(t)=exp{−AL(K)t+ML,K(t)}δ(0), where AL(K)=

[Λ0
L ⊗K + (1/2)

∑N

i,j=1
[(φTB2

ijφ)⊗ (Kσji)
2]], and ML,K(t) =∑N

i,j=1
[(φTBijφ)⊗ (Kσji)]wji(t).

The proofs of Lemmas are omitted here.
Proof of Theorem 3.1: Substituting the protocol (3) into the

system (1) gives ẋi(t) = K
∑N

j=1
aij(xj(t)− xi(t))+K

∑N

j=1
aij

fji(δj(t)− δi(t))ξji(t). By Assumption 2.2, we have dx(t)= −(L⊗
K)x(t) dt+

∑N

i=1

∑N

j=1
aij [ηN,i⊗(Kfji(δj(t)− δi(t)))] dwji(t),

which together with the definition of δ(t) gives

dδ(t) = − (L ⊗K)δ(t)dt

+

N∑
i,j=1

aij [(IN − JN )ηN,i

⊗ (Kfji (δj(t)− δi(t)))] dwji(t).

Then by the definition of δ̄(t), we have

dδ(t) = −
(
Λ0

L ⊗K
)
δ(t)dt

+

N∑
i,j=1

aij

[
φT (IN − JN )ηN,i

⊗ (Kfji (δj(t)− δi(t)))] dwji(t).

By the definitions of ηN,i and JN , we have ηT
Ni(IN − JN )ηN,i =

(N − 1)/N . By Lemma A.1, noting that (IN − JN )2 = IN − JN ,
applying the Itô formula to ‖δ(t)‖2, we get

d‖δ(t)‖2 = − δ
T
(t)

(
Λ0

L ⊗ (K +KT )
)
δ(t)dt+ dM1(t)

+
N − 1

N

N∑
i=1

N∑
j=1

a2
ij

×
(
fT
ji (δj(t)−δi(t))K

TKfji (δj(t)−δi(t))
)
dt,

where dM1(t)=2
∑N

i,j=1
δ
T
(t)aij [φ

T (IN−JN)ηN,i⊗(Kfji(δj(t)−
δi(t)))]dwji(t). By Assumption 2.1, we have d‖δ(t)‖2 ≤ −2λmin

(Ψf
L(K))‖δ̄(t)‖2 + dM1(t), Then by the comparison theorem ([18]),

we get (5), which together with the positive definiteness of Ψf
L(K)

leads to limt→∞ E[‖δ(t)‖2] = 0. By the properties of the matrix L,
we have

(1T ⊗ In)x(t) = (1T ⊗ In)x(0) +

N∑
i,j=1

aijMij(t),

where Mij(t) =
∫ t

0
[1T ηN,i ⊗ (Kfji(δj(s)− δi(s)))]dwji(s). By

Assumption 2.1, noting that 1T ηN,i = 1, it is estimated that

E

⎡⎣ t∫
0

∥∥1T ηN,i⊗(Kfji (δj(s)−δi(s)))
∥∥2

ds

⎤⎦≤ ‖K‖2σ̄2 ‖δ(0)‖2

λmin

(
Ψf

L(K)
) ,

which implies that Mij(t) is a square-integrable continuous
martingale. Then we know that as t → ∞, (1/N)(1T ⊗ In)x(t)
converges to a random variable with finite second-order moment both
in mean square and almost surely. Denote the limit random variable by
x∗ = (1/N)(1T ⊗ In)x(0) + (1/N)

∑N

i,j=1
aij

∫∞
0

Kfji(δj(t)−
δi(t))dwji(t) with E(x∗) = (1/N)

∑N

j=1
xj(0). This together with

the convergence of E[‖δ(t)‖2] means that (3) is an asymptotically
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unbiased m.s. average-consensus protocol. By the definition of x∗,
we have

E

[∥∥∥∥∥x∗ − 1

N

N∑
j=1

xj(0)

∥∥∥∥∥
2]

≤ ‖K‖2σ̄2

N2
E

∞∫
0

N∑
i=1

N∑
j=1

aij ‖δj(s)− δi(s)‖2 ds

=
2‖K‖2σ̄2

N2
E

∞∫
0

δ̄T (s)
(
Λ0

L ⊗ In
)
δ̄(s) ds

≤ ‖K‖2σ̄2λN (L) ‖δ(0)‖2

N2λmin

(
Ψf

L(K)
) ,

which gives the steady-state error (4). It is known that there exists
a positive constant α1, such that ‖−(Λ0

L⊗K)δ(t)‖≤α1‖δ(t)‖. By
Assumption 2.1 and the Cr inequality, we know that there exists
a positive constant α2, such that ‖

∑N

i=1

∑N

j=1
aij [φ

T (IN−JN )

ηN,i⊗(Kfji(δj(t)−δi(t)))]‖ ≤ α2‖δ(t)‖. Then by [12, Th. 4.2], we
know that (3) is an asymptotically unbiased a.s. average-consensus
protocol. �

Proof of Theorem 4.1: Applying Lemma A.3 and the Ito formula

gives d‖δ(t)‖2≤−λmin(ΨK)‖δ(t)‖2+2
∑N

i,j=1
δ
T
(t)[(φTBijφ)⊗

(KΣji)]δ(t)dwji(t), and d‖δ(t)‖2 ≥ − λmax(ΨK)‖δ(t)‖2 + 2∑N

i,j=1
δ
T
(t)[(φTBijφ)⊗ (KΣji)]δ(t)dwji(t). This together with

the comparison theorem gives (7). If ΨK is positive definite, then
E[‖δ(t)‖2] → 0. Also, similar to Theorem 3.1, we have limt→∞
E[‖xi(t)− x∗‖2] = 0, where x∗ = (1/N)1Tx(0) + (1/N)

∑N

i,j=1∫∞
0

(1TBij ⊗KΣji)δ(t)dwji(t). By Lemma A.2 and the definitions

of δ̃(t) and δ(t), applying (7) gives that

E

∥∥∥∥∥x∗ − 1

N

N∑
j=1

xj(0)

∥∥∥∥∥
2

=
1

N(N − 1)

N∑
i=1

N∑
j=1

E

∞∫
0

δ
T
(t)

×
(
φTBT

ijφφ
TBijφ⊗ ΣT

jiK
TKΣji

)
δ(t) dt

≤ λmax(ΦK)

N(N − 1)

∞∫
0

∥∥δ(0)∥∥2
e−λmin(ΨK)t dt,

which implies (8). Then Similar to Theorem 3.1, we know that (3) is a
m.s. and a.s. average-consensus protocol. �

Proof of Theorem 4.2: The “if” part follows directly from
Theorem 3.1. By the definition of Bij and φ, we have

∑N

i,j=1

φTBT
ijφφ

TBijφ =(2(N − 1)/N)φTLφ = (2(N − 1)/N)Λ0
L. This

together with K = kIn leads to −ΨK ≥ (2k((kσ2(N − 1)/N)−
1)Λ0

L)⊗ In. Then similarly to Theorem 4.1, we have d‖δ(t)‖2 ≥
2k((kσ2(N−1)/N)−1)λ2(L)‖δ(t)‖2+2

∑N

i,j=1
δ
T
(t)[(φTBijφ)⊗

(KΣji)]δ(t)dwji(t), which imply the “only if” part. �
Proof of Theorem 4.3: By Lemmas A.3 and A.4, apply-

ing the Itô formula to log ‖δ(t)‖2 gives d log ‖δ(t)‖2 ≤ −μdt+

(2/‖δ(t)‖2)
∑N

i,j=1
δ
T
(t)[(φTBijφ)⊗ (KΣji)]δ(t)dwji(t). There-

fore, it follows from the definition of μ that

2 log
∥∥δ(t)∥∥
t

≤
2 log

∥∥δ(0)∥∥
t

− μt+
M(t)

t
, (A.1)

where

M(t)=
2∥∥δ(t)∥∥2

N∑
i,j=1

δ
T
(t)

[
(φTBijφ)⊗(KΣji)

]
δ(t) dwji(t)

is a local martingale with M(0) = 0 and the quadratic variations ([12])
〈M,M〉t/t =

∑N

i,j=1
λ̂2
max((φ

TBijφ)⊗(KΣji)+(φTBT
ijφ)⊗(ΣT

ji

KT )) < ∞. Applying the law of large number gives limt→∞(M(t)/
t) = 0, a.s., which together with (A.1) gives limt→∞(log ‖δ(t)‖/t) ≤
−(μ/2) < 0 a.s. Then similar to Theorems 4.1 and 3.1, we know that
the protocol (3) is an a.s. average-consensus protocol. �

Proof of Theorem 4.4: From Lemma A.5, noting that AL(K),
ML,K(t) and exp{−AL(K)t+ML,K(t)} are all symmetric ma-
trix and the eigenvalues of exp{−AL(K)t+ML,K(t)} are all
nonnegative, we know that ‖δ(t)‖ ≤ exp{−λmin(AL(K))t +
λmax(ML,K(t))}‖δ(0)‖, which gives

log ‖δ(t)‖+ λmin(AL(K))t√
2t log log t

≤λmax(ML,K(t))√
2t log log t

+
log ‖δ(0)‖√
2t log log t

. (A.2)

Thus, by the Law of the Iterated Logarithm of Brownian motions,
noting that ‖Bij‖ ≤

√
2aij , we have (9). Similarly, we have ‖δ(t)‖ ≥

exp{−λmax(AL(K))t+ λmin(ML,K(t))}‖δ(0)‖. From above and
the Law of the Iterated Logarithm of Brownian motions, similar to
(A.2), we have (10). �

REFERENCES

[1] M. Huang and J. H. Manton, “Coordination and consensus of networked
agents with noisy measurement: Stochastic algorithms and asymptotic be-
havior,” SIAM J. Control & Optimiz.: Special Issue Control Optimization
Cooperative Netw., vol. 48, no. 1, pp. 134–161, 2009.

[2] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sen-
sor networks with imperfect communication: Link failures and channel
noise,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 355–369, 2009.

[3] T. Li and J. F. Zhang, “Consensus conditions of multiagent systems with
time-varying topologies and stochastic communicaiton noises,” IEEE
Trans. Autom. Control, vol. 55, no. 9, pp. 2043–2057, 2010.

[4] T. Li and J. F. Zhang, “Mean square average consensus under measure-
ment noises and fixed topologies: Necessary and sufficient conditions,”
Automatica, vol. 45, no. 8, pp. 1929–1936, 2009.

[5] J. Wang and N. Elia, “Distributed averaging under constraints on informa-
tion exchange: Emergence of Levy flights,” IEEE Trans. Autom. Control,
vol. 57, no. 10, pp. 2435–2449, 2012.

[6] J. Wang and N. Elia, “Mitigation of complex behavior over networked
systems: Analysis of spatially invariant structures,” Automatica, vol. 49,
no. 6, pp. 1626–1638, 2013.

[7] T. C. Aysal and K. E. Barner, “Convergence of consensus models with
stochastic distrubances,” IEEE Trans. Signal Process., vol. 56, no. 8,
pp. 4101–4113, 2010.

[8] G. S. Medvedev, “Stochastic stability of continuous time consensus pro-
tocols,” SIAM J. Control & Optimiz., vol. 50, no. 4, pp. 1859–1885, 2012.

[9] D. V. Dimarogonas and K. H. Johansson, “Stability analysis for multi-
agent systems using the incidence matrix: Quantized communication and
formation control,” Automatica, vol. 46, no. 4, p. 695-00, 2010.

[10] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, “Communication
constraints in the average consensus problem,” Automatica, vol. 44, no. 3,
pp. 671–684, 2008.

[11] N. Elia, “Remote stabilization over fading channels,” Syst. and Control
Lett., vol. 54, no. 3, pp. 237–249, 2005.

[12] X. Mao, Stochatic Differential Equations and Applications. Chichester,
U.K.: Horwood Publishing, 1997.

[13] N. M. M. de Abreu, “Old and new results on algebraic connectivity of
graphs,” Linear Algebra Applic., vol. 423, no. 1, pp. 53–73, 2007.

[14] B. C. Wang and J. F. Zhang, “Consensus conditions of multi-agent sys-
tems with unbalanced topology and stochastic disturbances,” J. Syst. Sci.
Mathmat. Sci., vol. 29, no. 10, pp. 1353–1365, 2009.

[15] R. Olfati-Saber and R. M. Murray, “Consensus problem in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[16] F. Wu and S. Hu, “Suppression and stabilization of noise,” Int. J. Control,
vol. 82, no. 11, pp. 2150–2157, 2009.

[17] X. Zong, F. Wu, and T. Tian, “Stability and stochastic stabilization of
numerical solutions of regime-switching jump diffusion systems,” J. Dif-
ference Equations Applic., vol. 19, no. 11, pp. 1733–1757, 2013.

[18] A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dy-
namical Systems. New York, NY, USA: Academic.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


